Addition of mechanically processed cellulosic fibers to ionomer cement: mechanical properties.

نویسندگان

  • Rafael Menezes Silva
  • Vinícius Xavier Mattar de Carvalho
  • Vitor César Dumont
  • Maria Helena Santos
  • Ana Márcia Macedo Ladeira Carvalho
چکیده

In this study, conventional restorative glass ionomer cement (GIC) was modified by embedding it with mechanically processed cellulose fibers. Two concentrations of fibers were weighed and agglutinated into the GIC during manipulation, yielding Experimental Groups 2 (G2; 3.62 wt% of fibers) and 3 (G3; 7.24 wt% of fibers), which were compared against a control group containing no fibers (G1). The compressive strengths and elastic modulus of the three groups, and their diametral tensile strengths and stiffness, were evaluated on a universal test machine. The compressive and diametral tensile strengths were significantly higher in G3 than in G1. Statistically significant differences in elastic modulus were also found between G2 and G1 and between G2 and G3, whereas the stiffness significantly differed between G1 and G2. The materials were then characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Heterogeneously shaped particles were found on the G2 and G3 surfaces, and the cement matrices were randomly interspersed with long intermingled fibers. The EDS spectra of the composites revealed the elemental compositions of the precursor materials. The physically processed cellulosic fibers (especially at the higher concentration) increased the compressive and diametral tensile strengths of the GIC, and demonstrated acceptable elastic modulus and stiffness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement of Glass Ionomer Cement: Incorporating with Silk Fiber

The aim of this study was to synthesis of glass ionomer-silk fiber composite and to evaluate the effect of adding natural degummed silk fiber on the mechanical properties of glass ionomer cement (GIC). For this purpose, natural degummed silk fibers with 1 mm in length and 13-16 µm in diameter were added to the ceramic component of a commercial glass ionomer cement in 1, 3 and 5 wt. %. Compressi...

متن کامل

Setting kinetics and mechanical properties of flax fibre reinforced glass ionomer restorative materials

Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and randomly distributed flax fibers (0, 0.5, 1, 2.5, 5 and 25 wt%) on setting reaction kinetics, and mechanical and morphological properties of glass ionomer cements. Addit...

متن کامل

Incorporation of Hydroxyapatite-Silica Nano-Powder for Enhancement of Glass Ionomer Cement (GIC)

Glass Ionomer Cement (GIC) is one of the most popular materials among the available dental restorative materials. They have desirable properties like direct adhesion to the tooth structure, thermal compatibility [1] and good biocompatibility [2,3]. Despite these advantages, brittleness, low tensile and flexural strengths have limited their use only to certain low stress-bearing sites. As such, ...

متن کامل

Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements.

BACKGROUND Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microst...

متن کامل

Improving mechanical properties of glass ionomer cements with fluorhydroxyapatite nanoparticles

Glass ionomer cements show great potential as low cost, minimally invasive dental restorative materials. However, their use is limited by relatively poor mechanical properties, especially fracture toughness. One possibility for improving their fracture toughness is through the addition of fluorhydroxyapatite nanoparticles, which resemble the crystals found in tooth enamel. Hydroxyapatite and fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brazilian oral research

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2015